科力远 CHS 系统实际是来自于吉利的技术,其首席技术官张彤也是来自吉利。仔细研究公布的这套用于混动系统的动力分流装置,核心是一个拉威娜式的双排行星齿轮组,这样的结构在自动变速箱中运用十分广泛,丰田经典的 4AT 上就在使用,说起来并不是什么新鲜事物,关键是吉利通过运用双排行星齿轮组,巧妙地规避了丰田的专利限制,同时也让该系统向自身的技术水平倾斜,取长补短,实现非常接近丰田 THS 系统的性能。
先放个丰田 THS-II 系统示意图:
大家应该都比较熟悉了,利用行星齿轮组的差速特性,把发动机、主电机和发电机三个转速进行耦合,由齿圈进行输出。上图是二代普锐斯的系统,三代系统为了进一步改善电机的输出特性,给主电机和齿圈之间加了一个行星齿轮组,如下图:
就是左边的那个齿轮组,注意,由于这个行星齿轮组的行星架是固定在壳体上的,这只能算是一套减速齿轮,所以并不是说 THS 变成了双排行星轮结构,同时,将齿圈与主减之间的带传动改成了齿轮传动。
由于有丰田 THS 专利限制,单排行星轮的方案行不通,大家只能想双排行星轮的办法,在检索吉利专利的时候顺手看了一下其他如长安、长城这样厂商的专利,感觉大多是把传统自动变速箱内核挖出来然后把几个轴做组合,把原来的锁止离合器之类的全都保留下来了,系统比较复杂。
当然,吉利也有这样的,下图是吉利的另一个专利:
吉利的诉求比较明确:
1. 要把两个电机放到同侧,避免像丰田 THS 系统那样发电机(上图中 MG1)靠近发动机而影响工作温度,因此采用双排共用行星架的设计;
2. 降低对主电机的转速和转矩要求,因此通过齿比设计实现较为宽范围的传动比;
3. 尽可能提高系统传动效率,因此加入了许多锁止离合器,比如可以将发动机转速和发电机转速直接相连。
可以看到,这样的系统,主要体现了吉利对自己电机制造、控制以及热管理方面的技术水平较弱的而做出针对性设计。
然而这样的系统离合器太多,控制较为复杂,同时发电机调速也比较局限。因此,吉利才选择了目前看到的 CHS 系统作为最终的解决方案。(实际上 CHS 系统的专利申请要早于上面的这套系统,可以看出吉利也是通过大量的选型比较之后才确定下来的,而且,貌似也只有这套系统的专利发明人中有李书福(点击查看最新人物消息) ,可以说是吉利内部比较满意和认可的方案)
下面就来简单说说这套系统,图片是自己在专利图上做了一些简单标注而来的,手拙还望见谅。
CHS 系统相比之前的系统做了大幅简化,核心变成了一个拉威娜双排行星齿轮系。下图可能比较直观,1、2 是太阳轮,4、5 是分别与 2、1 啮合的行星轮,4 和 5 共用一套行星架,而 4 是一个长齿轮,又与 5 啮合,5 再与外面的齿圈啮合,所以 4 是不直接与齿圈啮合的。
于是系统就变成了下图这样,发动机输出到行星架,蓝色的是主电机,与大太阳轮相连,红色的辅助电机(主要起发电和调速作用)与小太阳轮相连。主电机与长行星齿轮啮合,辅助电机与短行星齿轮啮合。这样,这个系统与丰田 THS 最大的区别就是主电机通过长行星齿轮-行星架直接与发动机转速耦合了,长行星齿轮就充当了上面说到 3 代普锐斯中加入的减速行星齿轮组,同时由于与发动机转速耦合获得额外的速比,希望获得比较宽范围传动比而降低主电机制造要求的目的就达到了。这样一来,撇开蓝色的长行星齿轮不看,剩下的另外一排行星齿轮组是不是就基本上可以当成 THS 的那个单排行星齿轮系统来看了?只不过主电机的转速是经过了耦合再传递到齿圈上去的。
除此之外,这套系统还是保留了两个锁止离合器,一个用来锁止发动机,避免在发动机曲轴的倒转,降低纯电驱动时的控制负责度,另一个用来锁止辅助电机,避免辅助电机工作在零转速附近的低效率状态。相比于丰田 THS 系统,两个锁止离合器的作用其实主要是为了降低调速控制中的复杂度,这也是吉利希望避开的技术弱项。
几个工作模式如下
1. 起步:
起步时直接将发动机锁止,由主电机进行输出,完全就是一台纯电动车。这样,如果未来系统用于插电混动,增大电机,也比较容易适配。
2. 混动行驶
当超过一定车速后,由于辅助电机达到较高转速,发动机启动进行调速,同时将动力分流用于动力输出和充电(或辅助电机调速)。
3. 混动巡航
在高速巡航状态下,当辅助电机工作在零转速附近时,直接将辅助电机锁止,以提高传动效率。
4. 制动回收
当减速或下坡时,车轮的转动带动轮系,通过两个电机为电池充电。
由此可见,吉利经过长时间选型下来的这套 CHS 系统,实际上并没有特别的创新之处,只是用双排行星齿轮的方式,在绕开丰田专利的情况下,实现了与丰田 THS 系统十分接近的结构和工作模式,同时还有利于规避吉利自己的技术弱项。